翻訳と辞書
Words near each other
・ Circulant matrix
・ Circular
・ Circular (album)
・ Circular (application)
・ Circular 10/65
・ Circular 10/70
・ Circular 230
・ Circular algebraic curve
・ Circular analysis
・ Circular arc hull
・ Circular bacterial chromosome
・ Circular Breathing
・ Circular breathing
・ Circular buffer
・ Circular chess
Circular coloring
・ Circular Congregational Church
・ Circular connector
・ Circular convolution
・ Circular cumulative causation
・ Circular definition
・ Circular delivery company
・ Circular dependency
・ Circular dichroism
・ Circular distribution
・ Circular DNA
・ Circular economy
・ Circular Electron Positron Collider
・ Circular ensemble
・ Circular error probable


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Circular coloring : ウィキペディア英語版
Circular coloring

In graph theory, circular coloring may be viewed as a refinement of usual graph coloring. The ''circular chromatic number'' of a graph G, denoted \chi_c(G) can be given by any of the following definitions, all of which are equivalent (for finite graphs).
#\chi_c(G) is the infimum over all real numbers r so that there exists a map from V(G) to a circle of circumference 1 with the property that any two adjacent vertices map to points at distance \ge \frac along this circle.
#\chi_c(G) is the infimum over all rational numbers \frac so that there exists a map from V(G) to the cyclic group /n with the property that adjacent vertices map to elements at distance \ge k apart.
#In an oriented graph, declare the ''imbalance'' of a cycle C to be |E(C)| divided by the minimum of the number of edges directed clockwise and the number of edges directed counterclockwise. Define the ''imbalance'' of the oriented graph to be the maximum imbalance of a cycle. Now, \chi_c(G) is the minimum imbalance of an orientation of G.
It is relatively easy to see that \chi_c(G) \le \chi(G) (especially using 1. or 2.), but in fact \lceil \chi_c(G) \rceil = \chi(G). It is in this sense that we view circular chromatic number as a refinement of the usual chromatic number.
Circular coloring was originally defined by , who called it "star coloring".
Coloring is dual to the subject of nowhere-zero flows and indeed, circular coloring has a natural dual notion: circular flows.
==See also==

*Rank coloring

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Circular coloring」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.